Rank-One Matrix Completion with Automatic Rank Estimation via L1-Norm Regularization

نویسندگان

  • Qiquan Shi
  • Haiping Lu
  • Yiu-ming Cheung
چکیده

Completing a matrix from a small subset of its entries, i.e., matrix completion, is a challenging problem arising from many real-world applications, such as machine learning and computer vision. One popular approach to solving the matrix completion problem is based on low-rank decomposition/factorization. Low-rank matrix decomposition-based methods often require a pre-specified rank, which is difficult to determine in practice. In this paper, we propose a novel low-rank decomposition-based matrix completion method with automatic rank estimation. Our method is based on rank-one approximation where a matrix is represented as a weighted summation of a set of rank-one matrices. To automatically determine the rank of an incomplete matrix, we impose L1-norm regularization on the weight vector and simultaneously minimize the reconstruction error. After obtaining the rank, we further remove the L1norm regularizer and refine recovery results. With a correctly estimated rank, we can obtain the optimal solution under certain conditions. Experimental results on both synthetic and real-world data demonstrate that the proposed method not only has good performance in rank estimation, but also achieves better recovery accuracy than competing methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Reconstruction in Compressed Remote Sensing with Low-rank and L1-norm Regularization

In this paper, we proposed a new model with nuclear-norm and L1-norm regularization for image reconstruction in aerospace remote sensing. The curvelet based L1-norm regularization promotes sparse reconstruction, while the low-rank based nuclear-norm regularization leads to a principle component solution. Split Bregman method is used to solve this problem. Numerical experiments show the proposed...

متن کامل

Fast Automatic Background Extraction via Robust PCA

Recent years have seen an explosion of interest in applications of sparse signal recovery and low rank matrix completion, due in part to the compelling use of the nuclear norm as a convex proxy for matrix rank. In some cases, minimizing the nuclear norm is equivalent to minimizing the rank of a matrix, and can lead to exact recovery of the underlying rank structure, see [Faz02, RFP10] for backg...

متن کامل

Low-Rank Tensor Completion by Truncated Nuclear Norm Regularization

Currently, low-rank tensor completion has gained cumulative attention in recovering incomplete visual data whose partial elements are missing. By taking a color image or video as a three-dimensional (3D) tensor, previous studies have suggested several definitions of tensor nuclear norm. However, they have limitations and may not properly approximate the real rank of a tensor. Besides, they do n...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Primal-Dual methods for sparse constrained matrix completion

We develop scalable algorithms for regular and non-negative matrix completion. In particular, we base the methods on trace-norm regularization that induces a low rank predicted matrix. The regularization problem is solved via a constraint generation method that explicitly maintains a sparse dual and the corresponding low rank primal solution. We provide a new dual block coordinate descent algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018